NONINVERTIBLE TRANSFORMATIONS ADMITTING NO ABSOLUTELY CONTINUOUS ct-FINITE INVARIANT MEASURE

نویسندگان

  • JANE M. HAWKINS
  • CESAR E. SILVA
  • C. E. SILVA
چکیده

We study a family of H-to-1 conservative ergodic endomorphisms which we will show to admit no rj-finite absolutely continuous invariant measure. We exhibit recurrent measures for these transformations and study their ratio sets; the examples can be realized as C°° endomorphisms of the 2-torus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 Jon

We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these. §0 Introduction Let (X,B, m, T ) be an invertible, ergodic measure preserving transformation of a σ-finite measure space, then there are no other σ-finite, m-abs...

متن کامل

. D S ] 2 6 Se p 20 05 ABSOLUTELY CONTINUOUS , INVARIANT MEASURES FOR DISSIPATIVE , ERGODIC TRANSFORMATIONS

We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these. §0 Introduction Let (X,B,m, T ) be an invertible, ergodic measure preserving transformation of a σ-finite measure space, then there are no other σ-finite, m-abso...

متن کامل

Absolutely Continuous, Invariant Measures for Dissipative, Ergodic Transformations

We show that a dissipative, ergodic measure preserving transformation of a σ-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these. Introduction Let (X,B, m, T ) be an invertible, ergodic measure preserving transformation of a σ-finite measure space, then there are no other σ-finite, m-absolu...

متن کامل

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

. D S ] 1 5 Ja n 19 92 THE EXISTENCE OF σ − FINITE INVARIANT MEASURES , APPLICATIONS TO REAL 1 - DIMENSIONAL DYNAMICS

A general construction for σ−finite absolutely continuous invariant measure will be presented. It will be shown that the local bounded distortion of the Radon-Nykodym derivatives of fn ∗ (λ) will imply the existence of a σ−finite invariant measure for the map f which is absolutely continuous with respect to λ, a measure on the phase space describing the sets of measure zero. Furthermore we will...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010